
UNIT 1

1.1 What is an Algorithm?

An algorithm is a sequence of unambiguous instructions for solving a

problem, i.e., for obtaining a required output for any legitimate input in a

finite amount of time.

Characteristics of an algorithm

 Input: Zero / more quantities are externally supplied.

 Output: At least one quantity is produced.

 Definiteness: Each instruction is clear and unambiguous.

 Finiteness: The algorithm must terminates after a finite number of steps.

 Efficiency: Every instruction must be very basic and runs in short time.

1.2 Fundamentals of Algorithmic Problem Solving

Understanding the Problem:

Read the problem’s description carefully and ask questions if you have

any doubts about the problem, do a few small examples by hand, think about

special cases, and ask questions again if needed.

An input to an algorithm specifies an instance of the problem the

algorithm solves. If you fail to do this step, your algorithm may work correctly

for a majority of inputs but crash on some “boundary” value. Remember a

correct algorithm is not one that works most of the time, but one that works

correctly for all legitimate inputs.

Ascertaining the Capabilities of the Computational Device:

RAM (random-access machine): instructions are executed one after

another, one operation at a time, use sequential algorithms.New computers:

execute operations concurrently, use parallel algorithms.

Also, consider the speed and amount of memory the algorithm would take

for different situations.

Choosing between Exact and Approximate Problem Solving

An algorithm that can solve the problem exactly is called an exact

algorithm.

 The algorithm that can solve the problem approximately is called an

approximation algorithm.

 Ex:extracting square roots, solving nonlinear equations, and evaluating

definite integrals etc

Algorithm Design Techniques

Provides guidance for designing algorithms for new problems

or problems for which there is no satisfactory algorithm.

Designing an Algorithm and Data Structures

Data structures are important for both design and analysis of

algorithms.

Methods of Specifying an Algorithm:

1. Pseudo code 2.Flowcharts

Proving an Algorithm’s Correctness:

The algorithm yields a required result for every legitimate input in a finite

amount of time.A common technique for proving correctness is to use

mathematical induction because an algorithm’s iterations provide a natural

sequence of steps needed for such proofs.For an approximation algorithm, we

usually would like to show that the error produced by the algorithm does not

exceed a predefined limit.

Analysing an Algorithm:

Time and space efficiency, simplicity, generality.

Coding an algorithm

As a rule, a good algorithm is a result of repeated effort and rework.

2. Fundamentals of the Analysis of Algorithm Efficiency

2.1 The Analysis Framework

The research experience has shown that for most problems, we can achieve

much more spectacular progress in speed than in space.

 Measuring an Input’s Size

When measuring input size for algorithms solving problems such as checking

primality of a positive integer n. Here, the input is just one number, and it is this

number’s magnitude that determines the input size. In such situations, it is

preferable to measure size by the number b of bits in the n’s binary

representation:

b=⌊log2n⌋+1

 Units for Measuring Running Time

Identify the most important operation of the algorithm, called the basic

operation, the operation contributing the most to the total running time, and

compute the number of times the basic operation is executed.

The established framework for the analysis of an algorithm’s time

efficiency suggests measuring it by counting the number of times the

algorithm’s basic operation is executed on inputs of size n.

 Orders of Growth

logan = logab * logbn

Algorithms that require an exponential number of operations are practical

for solving only problems of very small sizes.

 Worst-Case, Best-Case, and Average-Case Efficiencies

If the best-case efficiency of an algorithm is unsatisfactory, we can

immediately discard it without further analysis.

The direct approach for investigating average-case efficiency involves

dividing all instances of size n into several classes so that for each instance of

the class the number of times the algorithm’s basic operation is executed is the

same. Then a probability distribution of inputs is obtained or assumed so that the

expected value of the basic operation’s count can be found.

Space efficiency is measured by counting the number of extra memory

units consumed by the algorithm.

The efficiencies of some algorithms may differ significantly for inputs of

the same size. For such algorithms, we need to distinguish between the worst-

case, average-case, and best-case efficiencies.

2.2 Asymptotic Notations and Basic Efficiency Classes

O-notation

Definition: A function t(n) is said to be in O(g(n)), denoted t(n) ∈ O(g(n)),

if t(n) is bounded above by some constant multiple of g(n) for all large n,

i.e., if there exist some positive constant c and some nonnegative integer

n0 such that t(n) ≤ cg(n) for all n ≥ n0

Ω-notation

Definition: A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)),

if t(n) is bounded below by some constant multiple of g(n) for all large n,

i.e., if there exist some positive constant c and some nonnegative integer

n0 such that t(n) ≥ cg(n) for all n ≥ n0

Θ-notation

Definition: A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈ Θ(g(n)),

if t(n) is bounded both above and below by some constant multiples of

g(n) for all large n, i.e., if there exist some positive constant c1 and c2 and

some nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥

n0.

Useful Property Involving the Asymptotic Notations

 If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)), then t1(n) + t2(n) ∈

O(max{g1(n), g2(n)}) (also true for other two notations).

 L’Hôpital’s rule:

2 Basic efficiency classes

3. Brute Force and Exhaustive Search

Brute force is a straightforward approach to solving a problem, usually

directly based on the problem statement and definitions of the concepts

involved.

Selection Sort

We start selection sort by scanning the entire given list to find its smallest

element and exchange it with the first element, putting the smallest

element in its final position in the sorted list. Then we scan the list,

starting with the second element, to find the smallest among the last n − 1

elements and exchange it with thesecond element, putting the second

smallest element in its final position. After n − 1 passes, the list is sorted.

ALGORITHM Selection Sort(A[0..n − 1])

//Sorts a given array by selection sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

fori ← 0 to n − 2 do

 min ← i

 for j ← i + 1 to n − 1 do

 if A[j] < A[min]

 min ← j

 swap A[i] and A[min]

The basic operation is the key comparison A [j] < A [m i n] A[j] <

A[min]A[j]<A[min]. The number of times it is executed depends only on

the array size n nn and is given by the following sum:

Selection sort is a Θ (n2)algorithm on all inputs.

Bubble Sort

Another brute-force application to the sorting problem is to compare

adjacent elements of the list and exchange them if they are out of order.

By doing it repeatedly, we end up “bubbling up” the largest element to the

last position

on the list. The next pass bubbles up the second largest element, and so

on,

until after n − 1 passes the list is sorted.

ALGORITHM Bubble Sort(A[0..n − 1])

//Sorts a given array by bubble sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in non decreasing order

fori ← 0 to n − 2 do

 for j ← 0 to n − 2 − i do

 if A[j + 1] < A[j]

 swap A[j] and A[j + 1]

The number of key comparisons:

Sequential search

ALGORITHM SequentialSearch2(A[0..n], K)

//Implements sequential search with a search key as a sentinel

//Input: An array A of n elements and a search key K

//Output: The index of the first element in A[0..n − 1] whose value is

equal to K or −1 if no such element is found

A[n] ← K

i ← 0

while A[i] not equal to K do

 i ← i + 1

 ifi< n return i

else return −1

Exhaustive Search

Exhaustive search is simply a brute-force approach to

combinatorial problems.

Travelling Salesman Problem

Find the shortest tour through a given set of n nn cities that visits

each city exactly once before returning to the city where it started.

Weighted graph -> finding the shortest Hamiltonian circuit of the

graph: a cycle that passes through all the vertices of the graph exactly

once.

Knapsack Problem

Given n items of known weights w 1 , w 2 , … , w n

and values v 1 , v 2 , … , v n and a knapsack of capacity W, find the most

valuable subset of the items that fit into the knapsack.

Generate all the subsets of the set of n items given, computing the total

weight of each subset in order to identify feasible subsets.

Assignment Problem

There are n people who need to be assigned to execute n jobs, one

person per job. (That is, each person is assigned to exactly one job and

each job is assigned to exactly one person.) The cost that would accrue if

the ith person is assigned to the jth job is a known quantity C[i, j] for each

pair i , j = 1 , 2 , … , n. The problem is to find an assignment with the

minimum total cost.

	UNIT 1
	1.1 What is an Algorithm?
	An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.
	Characteristics of an algorithm
	 Input: Zero / more quantities are externally supplied.
	 Output: At least one quantity is produced.
	 Definiteness: Each instruction is clear and unambiguous.
	 Finiteness: The algorithm must terminates after a finite number of steps.
	 Efficiency: Every instruction must be very basic and runs in short time.
	1.2 Fundamentals of Algorithmic Problem Solving
	Understanding the Problem:
	Read the problem’s description carefully and ask questions if you have any doubts about the problem, do a few small examples by hand, think about special cases, and ask questions again if needed.
	An input to an algorithm specifies an instance of the problem the algorithm solves. If you fail to do this step, your algorithm may work correctly for a majority of inputs but crash on some “boundary” value. Remember a correct algorithm is not one tha...
	Ascertaining the Capabilities of the Computational Device:
	RAM (random-access machine): instructions are executed one after another, one operation at a time, use sequential algorithms.New computers: execute operations concurrently, use parallel algorithms.
	Also, consider the speed and amount of memory the algorithm would take for different situations.
	Choosing between Exact and Approximate Problem Solving
	An algorithm that can solve the problem exactly is called an exact algorithm.
	The algorithm that can solve the problem approximately is called an approximation algorithm.
	Ex:extracting square roots, solving nonlinear equations, and evaluating definite integrals etc
	Algorithm Design Techniques
	Provides guidance for designing algorithms for new problems or problems for which there is no satisfactory algorithm.
	Designing an Algorithm and Data Structures
	Data structures are important for both design and analysis of algorithms.
	Methods of Specifying an Algorithm:
	1. Pseudo code 2.Flowcharts
	Proving an Algorithm’s Correctness:
	The algorithm yields a required result for every legitimate input in a finite amount of time.A common technique for proving correctness is to use mathematical induction because an algorithm’s iterations provide a natural sequence of steps needed for s...
	Analysing an Algorithm:
	Time and space efficiency, simplicity, generality.
	Coding an algorithm
	As a rule, a good algorithm is a result of repeated effort and rework.
	2. Fundamentals of the Analysis of Algorithm Efficiency
	2.2 Asymptotic Notations and Basic Efficiency Classes

	3. Brute Force and Exhaustive Search
	Bubble Sort
	Sequential search

